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Abstract. We study properties of the so called in- and outer successive
radii of special families of convex bodies. First we consider the balls
of the p-norms, for which we show that the precise value of the outer
(inner) radii when p ≥ 2 (1 ≤ p ≤ 2), as well as bounds otherwise, can be
obtained as consequences of known results on Gelfand and Kolmogorov
numbers of identity operators between finite dimensional normed spaces.
We also prove properties that successive radii satisfy when we restrict
to the families of the constant width sets and the p-tangential bodies.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the
n-dimensional Euclidean space Rn. Let 〈·, ·〉 and |·|2 be the standard inner
product and the Euclidean norm in Rn, respectively, and denote by ei the i-
th canonical unit vector. For a 0-symmetric convex body K ∈ Kn, i.e., such
that K = −K, the well-known Minkowski functional min{λ ≥ 0 : x ∈ λK}
defines a norm, denoted by | · |K , which has K as its unit ball.

The set of all i-dimensional linear subspaces of Rn is denoted by Ln
i ,

and for L ∈ Ln
i , L⊥ denotes its orthogonal complement. For K ∈ Kn and

L ∈ Ln
i , the orthogonal projection of K onto L is denoted by K|L. With

lin{u1, . . . , um} we represent the linear hull of the vectors u1, . . . , um and
with [u1, u2] the line segment with end-points u1, u2. Finally, for S ⊂ Rn we
denote by conv S the convex hull of S and by intS and bdS its interior and
boundary. Moreover, we write relbdS to represent its relative boundary, i.e.,
the boundary of S relative to its affine hull aff S, and dimS to represent the
dimension of the set, i.e., the dimension of aff S.

The diameter, minimal width, circumradius and inradius of a convex body
K are denoted by D(K), ω(K), R(K) and r(K), respectively. For more
information on these functionals and their properties we refer to [5, pp. 56–
59]. If f is a functional on Kn depending on the dimension in which a convex
body K is embedded, and if K is contained in an affine space A, then we
write f(K; A) to stress that f has to be evaluated with respect to the space
A. Successive outer and inner radii are defined in the following way.
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Definition 1.1. For K ∈ Kn and i = 1, . . . , n let

Ri(K) = min
L∈Ln

i

R(K|L) and ri(K) = max
L∈Ln

i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
.

It is clear that the outer radii are increasing in i, whereas the inner radii
are decreasing in i. Moreover, Ri(K) is the smallest radius of a solid cylinder
with i-dimensional spherical cross section containing K, and ri(K) is the
radius of the greatest i-dimensional ball contained in K. We obviously have
Rn(K) = R(K), R1(K) = ω(K)/2, rn(K) = r(K) and r1(K) = D(K)/2.

The first systematic study of these and other families of successive radii
was developed in [2]. For more information on these radii and their relation
with other measures, we refer, for instance, to [4, 15, 19, 20, 28] and the
references inside. The successive radii of Definition 1.1 are closely related
to some notions in approximation theory, namely, they are particular cases
of the so-called Gelfand and Kolmogorov numbers of identity operators be-
tween finite dimensional normed spaces (see e.g. [23, 26]), which will be
defined in Section 2.

Here we are interested in computing/studying properties of the radii of
special families of convex bodies. So far, only orthogonal boxes, orthogonal
cross-polytopes [8, 13], simplices [1, 3, 8, 9] and ellipsoids [18] have been
studied and their radii explicitly given. In this paper we mainly consider
two families of convex bodies:

i) Unit p-balls: for p ≥ 1 we denote by Bn
p the unit p-ball associated to the

p-norm |·|p, i.e.,

Bn
p =



x = (x1, . . . , xn) ∈ Rn : |x|p =

(
n∑

i=1

|xi|p
)1/p

≤ 1



 ,

with |x|∞ = max{|xi| : i = 1, . . . , n}. The normed space with unit ball Bn
p

is as usual denoted by `n
p . For the sake of brevity, we will write Bn = Bn

2 to
denote the n-dimensional Euclidean unit ball. Moreover, for L ∈ Ln

i , we will
write Bi,L = Bn ∩ L. Notice that when p = 1 and p = ∞ the (unit) p-balls
are, respectively, the regular cross-polytope Bn

1 = conv{±e1, . . . ,±en} and
the regular cube Bn∞ =

∑n
j=1[−ej , ej ] with edge-length 2; here + denotes

the usual Minkowski (vectorial) addition. The values of the successive radii
of these particular p-balls are (see e.g. [8])

(1) Ri(Bn
∞) =

√
i, ri(Bn

∞) =
√

n

i
, Ri(Bn

1 ) =

√
i

n
, ri(Bn

1 ) =

√
1
i
.

ii) Constant width sets: A convex body K ∈ Kn has constant width if it has
the same width b in all directions, i.e., if its diameter and minimal width
have the same value, D(K) = ω(K) = b. The class of convex bodies of
constant width will be denoted by Wn. For a nice and thorough survey on
convex bodies of constant width see [11].
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In Section 2 we introduce the Gelfand and Kolmogorov numbers, stating
the necessary notation from Banach space theory and approximation theory.
We also present some known properties of these numbers and show the
relation between them and the successive radii of Definition 1.1.

Section 3 is devoted to study the in- and outer radii of the (unit) p-balls,
obtaining the following results.

Theorem 1.1. Let p ≥ 2 and 1 ≤ q ≤ 2. For all i = 1, . . . , n it holds

Ri(Bn
p ) = i1/2−1/p and ri(Bn

q ) = i1/2−1/q.

In the case 1 ≤ p ≤ 2 (respectively, q ≥ 2) we give matching upper
and lower bounds for the outer (inner) radii which are collected in the next
theorem. Here and later we use the notation an,i ³ bn,i for some double
sequences an,i, bn,i of non-negative real numbers to mean that there exist
absolute constants c, C > 0 such that c an,i ≤ bn,i ≤ C an,i.

Theorem 1.2. Let 1 ≤ p ≤ 2 and q ≥ 2. For all i = 1, . . . , n it holds

Ri(Bn
p ) ³





(
i
n

)1/2 for i ≥ n2(1−1/p),

n1/2−1/p for i ≤ n2(1−1/p),

and

ri(Bn
q ) ³





(
n
i

)1/2 for i ≥ n2/q,

n1/2−1/q for i ≤ n2/q.

In Section 4 we study the relation between the radii and the constant
width sets. It is well known (see e.g. [12, p. 125]) that if K ∈ Wn with
width b, then the inball and the circumball of K are concentric and both,

(2) R(K) + r(K) = b and D(K) + ω(K) = 2b.

So the natural question arises if an analogous relation holds for the more
general in- and outer radii, namely,

(3) Ri(K) + ri(K) = b, i = 1, . . . , n.

The next theorem shows that this relation is, in general, not true except, of
course, when i = 1, n.

Theorem 1.3. Let K ∈ Wn with width b. Then Ri(K) + ri(K) ≤ b, and
the inequality can be strict, as the Meissner body shows.

It can be easily seen (see Proposition 4.1) that for a different definition of
inner radii in which projections are involved, it is possible to get an equality
relation of the type (3). Some additional properties of the radii of constant
width sets are also studied.

Finally, in Section 5 we consider an additional family of convex bodies,
the so-called p-tangential bodies, for which a nice relation between their
inner radii can be proved.
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2. Gelfand numbers, Kolmogorov numbers and successive radii
of symmetric convex bodies

The authors of [15] already mentioned the close relation of successive radii
to notions of width studied in approximation theory, see e.g. [10, 26, 27].
Nevertheless, it seems that up to now this intimate connection has not been
so far highlighted in its full generality. So some results proved for successive
radii in recent years can be translated from corresponding results about
Gelfand numbers and Kolmogorov numbers of identity operators between
finite dimensional normed spaces. Our aim in this section is to point out
the formal connection between successive radii and Gelfand and Kolmogorov
numbers and to translate results from approximation theory to the geometric
setting of successive radii.

We start by introducing the necessary notation from Banach space theory
and from approximation theory. The letters X, Y always stand for Banach
spaces. The dual space of all bounded linear functionals on X will be denoted
by X ′. In this particular setting, we will also represent the action of a ∈ X ′
on x ∈ X by 〈x, a〉. The Banach space L(X, Y ) is the space of all linear
bounded operators from X to Y with the usual operator norm, denoted by
‖ · ‖. Then, the dual operator T ′ ∈ L(Y ′, X ′) of T ∈ L(X, Y ) is given by
〈x, T ′b〉 = 〈Tx, b〉 for x ∈ X and b ∈ Y ′. It satisfies ‖T ′‖ = ‖T‖.

For T ∈ L(X, Y ), we define the k-th approximation number as

ak(T ) := inf
{‖T −R‖ : R ∈ L(X, Y ), rankR < k

}
,

the k-th Gelfand number as

ck(T ) := inf
{‖T|M‖ : M linear subspace of X, codimM < k

}
,

and the k-th Kolmogorov number as

dk(T ) := inf
{‖qNT‖ : N linear subspace of Y, dimN < k

}
;

here T|M is the restriction of T to the subspace M and qN denotes the
quotient mapping Y −→ Y/N .

More explicit descriptions of the Gelfand and Kolmogorov numbers are

ck(T ) = inf
M⊂X

codim M<k

sup
x∈M,‖x‖≤1

‖Tx‖

and
dk(T ) = inf

N⊂Y
dim N<k

sup
x∈X,‖x‖≤1

inf
y∈N

‖Tx− y‖.

In the following lemma we collect some basic known facts about these
quantities. For this and more information on s-numbers of operators in the
normed case we refer to [23, 26].

Lemma 2.1. Let s ∈ {a, c, d}, k ∈ {1, . . . , n} and T ∈ L(X, Y ). Then:
i) ‖T‖ ≥ s1(T ) ≥ s2(T ) ≥ s3(T ) ≥ · · · ≥ 0.
ii) sk(STR) ≤ ‖S‖sk(T )‖R‖, for all operators R, S for which the prod-

uct STR is defined.
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iii) ck(T ) ≤ ak(T ) and dk(T ) ≤ ak(T ).
iv) ck(T ) = ak(T ) whenever X is a Hilbert space and dk(T ) = ak(T )

whenever Y is a Hilbert space.
v) ak(T ′) = ak(T ), and dk(T ′) = ck(T ) whenever T is a compact oper-

ator between Banach spaces.

In order to state the connection of the above numbers with the successive
radii, we need the well-known correspondence between a 0-symmetric convex
body K ∈ Kn and the n-dimensional normed space XK =

(
Rn, | · |K

)
with

unit ball K. For two such bodies K and E, let IE
K denote the identity

operator of Rn considered as an operator between the corresponding normed
spaces, XK −→ XE . If K = Bn

p , then we abbreviate IE
p for IE

K . Similarly,
if E = Bn

q , we write Iq
K for IE

K . Now the notation Iq
p is self-explaining.

Let K∗ =
{
y ∈ Rn : 〈x, y〉 ≤ 1, for all x ∈ K

}
denote, as usual, the polar

body of K. Recall that K∗ is the unit ball of the dual space of XK , i.e.,
X ′

K = XK∗ . Moreover, it holds

(4)
(
IE
K

)′ = IK∗
E∗ .

The following theorem gives the formal connection between the Gelfand
and Kolmogorov numbers, and the successive radii.

Theorem 2.1. Let K ∈ Kn be 0-symmetric. For all i = 1, . . . , n it holds

ri(K) = cn−i+1

(
IK
2

)−1 = dn−i+1

(
I2
K∗

)−1 = an−i+1

(
IK
2

)−1

and
Ri(K) = dn−i+1

(
I2
K

)
= cn−i+1

(
IK∗
2

)
= an−i+1

(
I2
K

)
.

Proof. The last two equalities between the Gelfand, Kolmogorov and ap-
proximation numbers follow immediately from the properties of these num-
bers stated above (see Lemma 2.1 and (4)).

For a 0-symmetric convex body K, the definition of ri(K) reduces to

ri(K) = max
L∈Ln

i

r(K ∩ L; L).

Let L ∈ Ln
i be any i-dimensional linear subspace of Rn. Observe that

∥∥IK
2 |L

∥∥ = min
{
R > 0 : |x|K ≤ R|x|2 for all x ∈ L

}

and
r(K ∩ L; L) = max

{
r > 0 : rBi,L ⊂ K ∩ L

}

= max
{

r > 0 : |x|K ≤ 1
r
|x|2 for all x ∈ L

}
.

Thus it follows that
r(K ∩ L;L) =

∥∥IK
2 |L

∥∥−1
,

and taking the maximum over L ∈ Ln
i , which is the same as taking the

maximum over all L with codimL < n−i+1, we get ri(K) = cn−i+1

(
IK
2

)−1.
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The equality for the outer radii is now deduced from the duality relation
dn−i+1

(
I2
K

)
= cn−i+1

(
IK∗
2

)
stated above, the previously proved identity

ri(K∗) = cn−i+1

(
IK∗
2

)−1, and the known relation (see [15, (1.2)])

(5) Ri(K) ri(K∗) = 1.

We would like to emphasize that (5) can be also seen as a special case of the
duality relation ck(T ′) = dk(T ) between Gelfand and Kolmogorov numbers.
For completeness we give a self-contained short argument.

To this end, observe that
R(K|L) = min{R > 0 : K|L ⊂ RBn}

= min
{
R > 0 : |PLx|2 ≤ R|x|K for all x ∈ Rn

}

=
∥∥PLI2

K

∥∥,

where PL denotes the orthogonal projection onto L in the Euclidean space
`n
2 . Then it follows from [25, Proposition 11.6.2] that

Ri(K) = min
L∈Ln

i

R(K|L) = min
L∈Ln

i

∥∥PLI2
K

∥∥ = dn−i+1

(
I2
K

)

= cn−i+1

(
IK∗
2

)
=

1
ri(K∗)

. ¤

3. Successive radii of p-balls

In this section we use the general characterization of inner and outer
successive radii by approximation quantities given in Theorem 2.1 to deduce
exact values and sharp asymptotic estimates for successive radii of p-balls.
This also shows that the results for p = 1 and p = ∞ referred to in (1) can be
also derived from known results about Gelfand and Kolmogorov numbers.

We start collecting the known results for Gelfand and Kolmogorov num-
bers ck(I

p
2 ) and dk(I2

p ) for 1 ≤ p ≤ ∞. It was proved by Steckin [31] and
Pietsch [24] that for all k = 1, . . . , n,

dk(I2
1 ) = ck(I∞2 ) =

√
n− k + 1

n
and ck(I2

1 ) = dk(I∞2 ) =
√

n− k + 1.

By Theorem 2.1 this immediately implies (1). Pietsch actually computed
all s-numbers

ak(Iq
p) = ck(Iq

p) = dk(Iq
p) = (n− k + 1)1/q−1/p

when 1 ≤ q ≤ p ≤ ∞. In particular, it holds

dk(I2
p ) = (n− k + 1)1/2−1/p and ck(I

q
2) = (n− k + 1)1/q−1/2

for 2 ≤ p ≤ ∞ and 1 ≤ q ≤ 2. Then, using Theorem 2.1, we get as a direct
consequence for successive radii Theorem 1.1.

The computation of the remaining Kolmogorov and Gelfand numbers of
identity operators Iq

p turned out to be more complicated. In the relevant
cases for us, the exact values seem to be very difficult to determine. Nev-
ertheless, matching lower and upper bounds up to multiplicative constants
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are known. The result we need is due to Gluskin [16], who proved that, for
q ≥ 2,

ck(I
q
2) ³





(
n−k+1

n

)1/2
for 1 ≤ k ≤ n + 1− n2/q,

n1/q−1/2 for n + 1− n2/q ≤ k ≤ n,

and, by duality, for 1 < p ≤ 2,

dk(I2
p ) ³





(
n−k+1

n

)1/2
for 1 ≤ k ≤ n + 1− n2(1−1/p),

n1/2−1/p for n + 1− n2(1−1/p) ≤ k ≤ n.

By Theorem 2.1, the direct consequence for successive radii is Theorem 1.2.
In connection with the approximation of embeddings between function

spaces, considerable work has been done to compute the Gelfand and Kol-
mogorov numbers of diagonal operators. We will now translate some of this
work into results for successive radii. Let Dt be the diagonal matrix with
diagonal t = (t1, . . . , tn), considered as a map on Rn. We will always assume
that t1 ≥ t2 ≥ · · · ≥ tn > 0. The following result is a special case of [25,
Theorem 11.11.4].

Proposition 3.1. Let 1 ≤ q ≤ 2 and p ≥ 2 and define positive numbers r, s
by 1/r = 1/q − 1/2 and 1/s = 1/2− 1/p. Then

ck

(
Dt : `n

2 −→ `n
q

)
=




n∑

j=k

trj




1/r

and dk

(
Dt : `n

p −→ `n
2

)
=




n∑

j=k

tsj




1/s

.

Let Kp = Dt(Bn
p ), p ≥ 2, and Kq = D−1

t (Bn
q ), 1 ≤ q ≤ 2. This is, Kp and

Kq are orthogonally dilated images of the balls Bn
p and Bn

q , respectively, ti
and t−1

i being the respective lengths of the half-axes in the direction ei. Thus
from the properties of the Gelfand and Kolmogorov numbers, we directly
obtain from Proposition 3.1 that

ck

(
IKq

2

)
=




n∑

j=k

trj




1/r

and dk

(
I2
Kp

)
=




n∑

j=k

tsj




1/s

.

Finally, Theorem 2.1 leads to the following result.

Theorem 3.1. Let 1 ≤ q ≤ 2 and p ≥ 2 and define positive numbers r, s
by 1/r = 1/q − 1/2 and 1/s = 1/2 − 1/p. Let t = (t1, . . . , tn) such that
t1 ≥ t2 ≥ · · · ≥ tn > 0 and let Kp = Dt(Bn

p ) and Kq = D−1
t (Bn

q ). Then

ri(Kq) =




n∑

j=n−i+1

trj



−1/r

and Ri(Kp) =




n∑

j=n−i+1

tsj




1/s

.
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For q = 1 and p = ∞, the values of the inner radii of orthogonal cross-
polytopes and the outer radii of orthogonal boxes are obtained (see [8, The-
orem 4.4]); for p = q = 2 the successive radii of the ellipsoids can be deduced
(see [18, p. 18]), namely, Ri(K2) = tn−i+1, ri(K2) = ti.

We also remark that the values of the outer radii of orthogonal cross-
polytopes (and so the inner radii of orthogonal boxes) can be derived from
[25, Theorem 11.11.7] via Theorem 2.1 (see [8, Proposition 4.3] and [13,
Theorem 1]). Finally, we mention that the results from [21, 22] can be used
to compute (or to estimate, up to multiplicative constants) the successive
radii of unit balls of symmetric n-dimensional normed spaces; in particular
this applies to unit balls of Lorentz and Orlicz sequence spaces.

3.1. Appendix: a geometrical proof of Theorem 1.1. In this appendix
we sketch a geometrical proof of Theorem 1.1. We point out that it partly
follows the idea of the proof of [25, Theorem 11.11.4], from a geometric point
of view.

In order to show the theorem, we need the following two facts. On the
one hand, it is an easy computation to check that

(6) If 1 ≤ p ≤ 2 then R(Bn
p ) = 1. If p ≥ 2 then R(Bn

p ) = n1/2−1/p.

On the other hand, we observe that if P ⊂ Rn is a polytope with 0 ∈ intP
then, for any L ∈ Ln

i , PL = P ∩ L is an i-dimensional polytope. Let v be a
vertex of PL and we denote by F the smallest (in the sense of dimension) face
of P containing v, which gives F ∩L = {v}. If we assume that dimF > n−i,
then it would be dim(F + L) = i + dimF > n, which is not possible.
Therefore dimF ≤ n− i, i.e., we have proved the following:

(7) If P ⊂ Rn is a polytope with 0 ∈ intP , then any L ∈ Ln
i inter-

sects P in one of its (n− i)-faces.

Proof of Theorem 1.1. Notice that in order to prove that Ri(Bn
p ) = i1/2−1/p,

p ≥ 2, it suffices to show

(8) R(Bn
p ∩ L) ≥ i1/2−1/p for all L ∈ Ln

i ;

then, using (6), since R(Bn
p |L) ≥ R(Bn

p ∩ L) and

R
(
Bn

p | lin{e1, . . . , ei}
)

= R
(
Bn

p ∩ lin{e1, . . . , ei}
)

= i1/2−1/p,

we get that Ri(Bn
p ) = i1/2−1/p, as required.

Let L ∈ Ln
i . By (7) there exists an (n− i)-face Fn−i of the cube Bn∞ such

that L ∩ Fn−i 6= ∅. Let x ∈ L ∩ Fn−i. Without loss of generality we assume

Fn−i =
{
(t1, . . . , tn−i, 1, . . . , 1) ∈ Rn : |tj | ≤ 1, j = 1, . . . , n− i

}
,

i.e., x = (x1, . . . , xn−i, 1, . . . , 1) with |xj | ≤ 1, j = 1, . . . , n − i. Moreover,
let λ =

(
i +

∑n−i
j=1 |xj |p

)−1/p ∈ (0, 1]. Then z = λx ∈ L ∩ bdBn
p , and since
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p ≥ 2 and |xj | ≤ 1, we clearly get

|z|2 =

(
i +

∑n−i
j=1 |xj |2

)1/2

(
i +

∑n−i
j=1 |xj |p

)1/p
≥

(
i +

∑n−i
j=1 |xj |p

)1/2

(
i +

∑n−i
j=1 |xj |p

)1/p
=

(
i +

n−i∑

j=1

|xj |p
)1/2−1/p

≥ i1/2−1/p.

It shows (8). Finally, the value for the inner radii comes from (5) and the
fact that (Bn

p )∗ = Bn
q with 1/p + 1/q = 1. ¤

4. On constant width sets

Constant width sets have been intensively studied along the last century.
In the plane they are well known, whereas the situation becomes much more
complicated in dimension n ≥ 3 (see e.g. [5, §15], [12, Ch. 7] and [11] for
detailed surveys).

The best known 3-dimensional constant width sets are the revolution of
planar convex bodies with constant width, and the so-called Meissner bodies,
which are constructed, roughly speaking, in the following way. Let T3 be
a 3-dimensional regular tetrahedron with edge length b, and consider the
intersection K of four balls of radius b having the vertices of T3 as centers.
Then K is bounded by four pieces of sphere which meet in six circular
arcs. However, K is not a constant width set, because the distance between
two of those opposite circular arcs is strictly greater than b. The Meissner
bodies are then obtained rounding suitably three of those arcs (see Figure 1).
Notice that two Meissner bodies can be constructed, depending on the three
rounded arcs either converge to a vertex or form a triangle. For a more
detailed construction of the Meissner bodies we refer to [5, p. 144].

Figure 1. A Meissner body.

Proof of Theorem 1.3. For K ∈ Wn with width b, let L′ ∈ Ln
i be such that

(9) r(K|L′; L′) = max
L∈Ln

i

r(K|L; L).

It is well-known (see e.g. [5, p. 135]) that every orthogonal projection of a
constant width set is also a body of constant width having the same width.
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Then, using (2) one can easily obtain that

b = R(K|L′) + r(K|L′;L′) ≥ Ri(K) + max
L∈Ln

i

r(K|L; L)

≥ Ri(K) + max
L∈Ln

i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
= Ri(K) + ri(K).

So it remains to prove that the inequality can be strict. Let KM ∈ W3 be
a Meissner body with width b. It is known (see e.g. [7, p. 37]) that the
orthogonal projection of KM onto the plane Π determined by two oppo-
site edges of the generating tetrahedron is a 2-dimensional ball with radius
b/2. Then, since R2(KM ) ≥ R1(KM ) = b/2 and R(KM |Π) = b/2, we get
R2(KM ) = b/2. So, we have to prove that r2(KM ) < b/2. In order to show
it, we assume r2(KM ) = b/2, and we will get a contradiction.

From the definition of r2(KM ), there exist L ∈ L3
2 and x ∈ L⊥ such that

b
2

= r2(KM ) = r
(
KM ∩ (x + L);x + L

)
,

and thus there exists a circle C of radius b/2 contained in KM ∩ (x + L).
Moreover, observe that C = KM ∩ (x + L), otherwise there would exist a
point p ∈ (

KM ∩ (x + L)
)\C, and then D(KM ) ≥ D

(
KM ∩ (x + L)

)
> b,

which is not possible. Let y ∈ intKM such that C = y + (b/2)Bi,L, and let
v ∈ relbd Bi,L. Then the point y + (b/2)v ∈ y + (b/2) relbdBi,L = relbdC
and thus, y + (b/2)v cannot be a vertex of KM .

On the one hand, if y + (b/2)v lies on one of the four pieces of sphere
bounding KM , by the construction of the Meissner body and taking into
account that the segment

[
y−(b/2)v, y+(b/2)v

] ⊂ C and that it has length
b, then y − (b/2)v should be the opposite vertex, which is not possible. On
the other hand, if y+(b/2)v lies on one of the (rounded) arcs, then C should
touch one of the opposite sphere pieces of KM , which leads to the previous
case and again to a contradiction. ¤

We notice that (9) indeed defines another sequence of successive inner
radii, namely,

r̃i(K) = max
L∈Ln

i

r(K|L;L).

See [2] for a detailed study of these and other radii. If these new inner radii
are involved, then an equality of the type (2) is obtained. Moreover, it is
well-known that for any constant width set K ∈ Wn of width b it holds

(10) b
(

1−
√

n

2(n + 1)

)
≤ r(K) ≤ R(K) ≤ b

√
n

2(n + 1)

(see e.g. [11, p. 68] or [12, p. 125]); the analogous result for these inner and
the outer radii can be easily obtained.

Proposition 4.1. For any K ∈ Wn of width b and all i = 1, . . . , n it holds

Ri(K) + r̃i(K) = b
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and

(11) b

(
1−

√
i

2(i + 1)

)
< r̃i(K) ≤ Ri(K) < b

√
i

2(i + 1)
.

Proof. Notice that for any K ∈ Wn, say of width b, and for any i = 1, . . . , n,
the i-plane L′ ∈ Ln

i giving the value for Ri(K) gives also r̃i(K): indeed,
if Ri(K) = R(K|L′), since K|L is also a constant width set of width b
satisfying R(K|L) + r(K|L; L) = b for all L ∈ Ln

i (cf. (2)), then

r(K|L′; L′) = b− R(K|L′) ≥ b− R(K|L) = r(K|L; L)

for all L ∈ Ln
i , and so r̃i(K) = r(K|L′;L′). Therefore,

Ri(K) + r̃i(K) = R(K|L′) + r(K|L′; L′) = b,

and moreover, applying (10) to the i-dimensional set K|L′ gives the left
and right inequalities in (11). In order to conclude the proof of (11) notice
that, since K is a constant width set and r̃1(K) = D(K)/2 (see [2]), then
r̃i(K) ≤ r̃1(K) = D(K)/2 = ω(K)/2 = R1(K) ≤ Ri(K).

We observe that equality r̃i(K) = Ri(K) holds for any constant width set
K ∈ Wn such that K|L′ = (b/2)Bi,L′ . ¤

5. A property on p-tangential bodies.

We conclude the paper stating a property for the so-called p-tangential
bodies. A convex body K ∈ Kn containing the Euclidean ball Bn is called
a p-tangential body of Bn, 0 ≤ p ≤ n − 1, if each support plane of K that
is not a support plane of Bn contains only (p− 1)-singular points of K [30,
p. 86]. Here x ∈ bd K is said to be an r-singular point of K if the dimension
of the normal cone in x is at least n− r. For further characterizations and
properties of p-tangential bodies we refer to [30, Section 2.2].

So a 0-tangential body of Bn is just Bn itself and each p-tangential body
of Bn is also a q-tangential body for p ≤ q ≤ n − 1. A 1-tangential body
can be seen as the convex hull of Bn and countably many points such that
the line segment joining any pair of those points intersects the ball. A cel-
ebrated result of Favard [14] states a nice characterization of n-dimensional
p-tangential bodies in terms of the so-called quermassintegrals of K, namely,
that the n−p+1 first ones coincide. We will not enter here in the definition
of these measures, for the interested reader we refer to [30, p. 431].

Here we show a result in the spirit of the above mentioned Favard’s the-
orem, in the sense that now, for a p-tangential body, many inner radii also
coincide.

Proposition 5.1. Let K ∈ Kn be a p-tangential body of Bn, 0 ≤ p ≤ n− 1.
Then

rn(K) = rn−1(K) = · · · = rp+1(K) = 1.
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Proof. It is a direct consequence from the definition that any p-tangential
body of Bn has inradius 1. So, if p = n − 1 then rn(K) = 1 and the result
follows. Thus, we assume 1 ≤ p ≤ n− 2.

Since the inner radii form a decreasing sequence then

1 = rn(K) ≤ rn−1(K) ≤ · · · ≤ rp+1(K),

and it suffices to show that rp+1(K) ≤ 1. So we assume rp+1(K) > 1 and
we will get a contradiction. On the one hand, by definition of inner radii,
there exist t ∈ Rn and L ∈ Ln

p+1 such that

(12) t + rp+1(K)Bp+1,L ⊆ K.

On the other hand, in [29, Lemma 2.5] it is shown, in particular, that K is a
p-tangential body of Bn, 1 ≤ p ≤ n−2, if and only if K|u⊥ is a p-tangential
body of Bn−1,u⊥ for any unit vector u ∈ Rn. From this result it can be
easily obtained that the orthogonal projection K|L is again a p-tangential
body of the ball Bn|L = Bp+1,L, and then

(13) r(K|L; L) = r(Bp+1,L; L) = 1.

Moreover, from (12) we get that t|L + rp+1(K)Bp+1,L ⊆ K|L, and then,
together with (13), we obtain the desired contradiction:

1 = r(K|L; L) ≥ rp+1(K) > 1. ¤

This results shows (see [6, Lemma 3.2]) that p-tangential bodies of the
Euclidean ball Bn are {rp+1, . . . , rn−1}-isoradial. We recall that a convex
body K is called rj-isoradial if for every L ∈ Ln

j there exist t ∈ Rn such that(
t + rj(K)Bn

) ∩ (t + L) ⊂ K, and is said to be {rj : j ∈ I}-isoradial, for a
subset I ⊂ {1, . . . , n− 1}, if it is rj-isoradial for all j ∈ I.
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[24] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. 51 (1974), 201–

223.
[25] A. Pietsch, Operator Ideals. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
[26] A. Pietsch, Eigenvalues and s-numbers. Cambridge University Press, 1987.
[27] A. Pinkus, N-Widths in Approximation Theory. Springer-Verlag, Berlin, 1985.
[28] S. V. Puhov, Inequalities for the Kolmogorov and Bernštĕın widths in Hilbert space,
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